指数平滑法是一种比较常用的时间序列预测法。其原理是任一期的指数平滑值是本期实际观察值与前一期指数平滑值的加权平均,这种方法融合了新旧价值信息,赋予较新信息更大的权重。
这样做的重要意义是,因为预测上,越接近现在的信息越比较可信,而越远的信息,历史陈旧则可信程度没有那么充足。指数平滑法就是抓住这个特点,赋予最新的数据较高的权重,而其他数据随着时间的增加,其权重也随之降低。
一般来说,当时间序列数据呈稳定的水平趋势时,选择较小的α值,为0.05到0.2之间;当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间;当时间序列数据波动很大,长期趋势变化幅度较大,是明显且迅速的上升或下降趋势时,宜选择较大的α值,可在0.6-0.8之间,以使模型灵敏度高些,迅速跟上数据的变化;当时间序列数据是上升(或下降)的发展趋势,a应取较大的值,在0.6-1之间。
比如有以下13期的实际需求数据
通过图例,实际需求还是比较稳定,因此初始α值选择0.2。而第0期的预测值为21054,通过一次指数平滑公式
得出结果如下:
尽管如此,这个0.2的值是否适合了,凭此计算出的预测值21021,是否也值得可信。
一般来说,为了让选择的α值适合,预测和实际之间的MAPE(Mean Absolute Percentage Error, 平均绝对百分比误差)要达到最优化。
因此,0.2的取值计算得出的MAPE为3.25%
规划求解可以帮忙我们求出适合的α值,让MAPE值最小。
但是规划求解有个缺陷,就是取值只能大于等于0,而指数平滑的α值应为0到1之间,因此规划求解即可取0也可以取值1,就是有点矛盾。当然要解决这个还是有办法的,但是不在本篇讨论中。
先看一下结果。约束计算下,如果α为0的时候,MAPE最小,为3.14%。这个情况下,下一期的预测值为21054。
不过如果初始期预测值为21706的时候,通过规划求解,可以得出MAPE在α值取值0.4左右的时候,为3.51%
那么,这情况下指数α可以考虑取值0.4来计算。从图例来看,取值0.4也比较符合这个特点:当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间。
这是对指数选择的一个不错的方法。
玛氏中国|2025年度冠军宠物进口货运代理服务遴选
2068 阅读京东物流江西省大件京东帮招商
1394 阅读京东完成对达达集团的私有化收购,达达将从美股退市
1388 阅读京东物流陕西省大件京东帮招商
1193 阅读顺新晖和宁德时代签署战略合作协议,共建“零碳冷链”生态圈
1162 阅读知名网络货运平台去年营收397.97亿,净利润实现1.4亿元
1033 阅读菜鸟与全球糖果巨头不凡帝范梅勒达成供应链合作
944 阅读飞熊领鲜C轮融资落地,进口冻品产业互联网平台加速全链路生态布局
963 阅读菜鸟在加拿大加开海外仓,加速全球供应链仓网建设
946 阅读《2024年交通运输行业发展统计公报》发布
888 阅读