我们经常在谈论供应链中的数据需要做到及时性和准确性,为了实现这些目标,公司会花大价钱投入信息系统建设。
大家有没有想过,数据的这些昂贵的性能到底能对供应链带来多大收益?为什么说数字化供应链是势在必行?这是本文想要聊的话题。
数据有许多类型,其中有一种分类方法是把它分为静态和动态数据,前者包括了公司基本信息、产品型号、采购价格、BOM等等相对固定的信息。
后者主要是一些交易性的信息,比如生产线每日的产量、客户订单数量、仓库实际收货数量、运输所在位置等等变动的信息。
静态数据做到准确即可,没有实时性的要求,比如公司的名称一般不会发生变动,只需要确保公司地址、法人和开户银行等信息是正确的。
动态数据的要求就很高了,不仅要准确,还要能反映出每时每刻的实际情况。
大家都有网购的经验,在商品出库以后,快递公司会每隔一段时间刷新包裹所在位置,这是通过车载GPS定位实现的,然后根据卡车配送计划,大致上能给出派送的时间。通过一台卡车上的GPS,可以跟踪整车的货物,这是1对N的关系,因此实现动态数据的成本并不高。
离散型制造业的情况就复杂多了,一件商品需要从原材料供应商开始追溯,进入工厂以后,需要经过若干个不同生产加工中心,然后完成组装、检验,最终才能入库,配送给下游的经销商或零售商。
我们很少会在原材料上放置追踪定位装置,除非这批货物价值很高,或是有这方面的强制监管要求,比如药品。
如果想要跟踪生产进度,就需要使用工业4.0的技术,在每台设备上装传感器,完成加工后,系统自动上传数据。如果要在每台生产和内部搬运设备上都安装传感器,对于一家工厂来说负担太大,性价比不高,除了少数的行业标杆企业以外,对于大多数工厂来说,想要做实时数据的想法并不强烈。
话虽如此,供应链对于数据及时和准确性是有很强的需求的,因为我们要在所有的生产、分销、采购和售后服务之间建立数据的无缝链接。除此之外,还有两个关键因素使得我们必须获得及时和准确性。
1.增强供应链可视性
对于供应链上的玩家来说,关键的可视性问题包括了货物的预计生产出货时间,比如供应商承诺了30天交货,但是实际上他需要45天,因为一些原材料涨价了,供应商需要更多的时间在市场上找到货源,他不愿意买更贵的原料,因为这会增加成本,除非客户愿意接受供应商的调价请求。
原料和零部件库存的所处位置也属于可视性,客户需要根据这些信息,来安排后续的生产和销售计划,并且非常依赖于信息的准确性。当供应商承诺货物将会在某日送到客户工厂后,供应链就把这个信息输入系统,并以此为依据来制定生产计划,销售根据生产完成日期来通知客户,环环相扣。
一旦供应商的信息有误,货物晚于承诺时间到达,就会影响到供应链下游的安排,所谓的“计划赶不上变化”就发生了。
追踪交货期和库存位置仅是可视性的初阶水平,更深层次的要求是可以预警供应链中断风险。根据现有的信息,我们需要判断何时何地会出现缺货,以及对生产和销售的影响是什么。
比如,生产线缺少某种零部件,所以会停线4个小时。如果每小时产量是100套产品,每套售价是200元,那么造成的损失就等于4*100*200=80000元。
当然在现实世界中计算的方式更加复杂,某种原料的短缺会牵涉到N多产品和N多客户。如果我们能增强可视性,就能够预见到未来的潜在供应短缺,并能够在第一时间里作出反应。
要实现这点,就必须让数据及时和准确地在供应链上下游之间自动传输,尽量减少人为的干预的环节。
2.提高计划的有效性
预测计划的重要输入是历史销售记录,以数据为基础,结合预测模型,制定出中长期的预测。
对于制造企业来说,财务需要供应链提供的输入,来制定未来的商业计划和各类预算,比如库存、采购金额、运费等等。
底层数据的准确性非常重要,所有的计划都是在这些数据的基础上,配以数据模型,然后“加工”出来的。供应链会花费一定的时间在数据维护上,就是要确保基础数据的准确性。
我们知道预测有一个定律,近期的准确性高于远期的,就像是预测天气一样,天气预报上关于明天的天气是最准的,越往后准确性越低。
供应链为了增强预测准确性,就需要拿到最新的数据,这样做出来的计划准确性就越高。现在的需求波动越来越频繁,可能一天一个样,想要做出最准确的判断,必须用最新的数据。
考虑到以上的两点动因,供应链一直在努力获得最及时和准确的数据。这里有几个需要特别留意的点值得大家关注。
1.自动化数据采集
如有可能的话,应该尽量在实时情况下收集、传输数据。数据存储在供应链内部和外部的各个节点上,为了提升数据可靠性和及时性,最好的办法就是自动化采集。
在内部实施这点相对容易,只需要投资数字化工具,实施IT项目就可以实现。
在外部伙伴实施起来难度就高了,其中的最大阻力是害怕共享数据后的商业机密泄露。
供应商担心客户知道了他的上游供应商的信息,可能会跳过中间商,不让他继续赚差价。因此在做系统对接的时候,要确保只分享可以分享的数据,比如包装规格之类的。
2.控制对相关数据的访问
根据使用者在公司中的职能,给予特定的数据访问权限,比如采购订单只能由采购计划员进行创建和修改,公司里的其他人只有查看的权限。
对于外部伙伴也是一样,客户可以查看供应商的库存商品数量信息,但他绝对不能访问商品的成本分析等商业机密。
3.努力提升、维护数据的准确性
我们需要不断提升数据的准确性,其中关键在于数据采集和输入。我们要定期维护数据,比如系统中库存或是倒冲过账出现了负数,说明某些地方的数据存在问题,流程可能有漏洞,需要我们找到问题点并且尽快处理掉。
数据是供应链的根基,为我们制定各类计划提供了基础。实现准确和及时的数据虽然有点小贵,但是在供应链大中断时期(the Great Supply Chain Disruption),投资必然能带来相应的回报。
618里的“1分钱”快递
1610 阅读京东物流陕西省大件京东帮招商
1268 阅读日日顺供应链入选商务部《数智供应链案例集》“十大典型案例”
1230 阅读京东与小红书官宣推出“红京计划”
1039 阅读2025 LOG 低碳供应链物流 数智化优秀服务商
956 阅读2025 LOG低碳供应链物流 杰出贡献奖
987 阅读2025 LOG低碳供应链物流 最具影响力品牌商
849 阅读2025 LOG低碳供应链物流 杰出贡献奖
868 阅读京东物流辽宁省区大件京东帮/宅配招商
818 阅读年营收643亿,净利88亿,航空货运三巨头业绩出炉
837 阅读