数据分析是供应链管理者的必修课,我们整天都在和各种报表和数字打交道,在日常工作中锻炼出分析数据的能力。我们可能没有意识到,数据分析早已经融入在供应链管理人士的DNA里,所以它是一门必须掌握的技能。
数据分析是一个很广泛的概念,大体上可以分为以下4种。
描述性分析向我们揭示了过去发生了什么,例如前一天的销售和交付情况,上个月的库存水平,也就是 “What has happened?”
供应链经理就像是飞机的驾驶员,需要跟踪、监控几十个不同的指标,例如库存水平、人工成本、运输费用、材料费用、客户的交货及时率、缺货数量、供应商的准时交货率等等。
重要的描述性分析指标就是KPI,它们给管理者发出信号,表明企业运行的情况,是良好或是欠佳。描述性分析通常使用电子表格和系统软件进行分析。
描述性分析报告使用基本的统计数据,包括总和、平均值、标准偏差、百分比和比率等。尽管统计数据不复杂,但不是每个人都对数字有敏锐感,面对一大串的数字,有些人可能会感到茫然。
为了更好地传递信息,我们经常使用各种图形、图表,这就是“一图胜千言”的作用。现在很流行使用可视化图表,也叫做Dashboard,用一页纸把最重要的KPI展现出来。
此外,自动化的系统可以向管理者发送预警,例如无法按时完成产量或是交货率低于设定的目标。
每个供应链管理者都会在工作中遇到描述性分析,通常是一线基层的统计数据,报告供应链运营中发生的事情。
部分数据是实时的,使用描述性分析的人需要相当高的供应链管理水平,因为他们需要快速地做出反应,采取行动。
我们需要具备使用电子表格、制作图形或开发可视化仪表盘的技能,并且能够在PPT中使用这些数据和工具,向领导和其他团队成员解释数据。
描述性分析是回顾过去发生的事情,但是它无法判断为什么会发生这种情况,也不能预判接下来会发生什么,所以我们需要使用其他的分析方法。
当运营KPI没有达标时,我们就需要调查问题原因,这就是诊断分析的作用,告诉我们为什么会发生这种情况,提供洞察力。
举个例子,描述性分析显示某件商品的缺货数量增加了,造成缺货的原因可能是需求增加了或是供应不足,想要找到问题的根源,就需要使用诊断分析工具,例如鱼骨图、5Why分析法等。
我们从库存水平、上周或是去年同期需求变化、商品损坏率、供应商或零售店的延迟交货等方面开始调查,这些都可能导致缺货。
资深的人员可以使用分析工具和凭借他们的经验,快速找到主要原因,然后制定补货计划以避免更多的缺货。这些分析是在进行统计分析后得到的,包括数据挖掘、根本原因分析、线性回归、敏感性和相关性分析。
诊断分析的专家就像是供应链的“侦探”,当出现问题时,他们会根据描述性分析的结果找出“罪魁祸首”。追溯物料在供应链中的活动,包括采购、制造、移动和销售等过程,了解不同事件和结果之间的关系。
从事诊断分析的人员需要相当高水平的供应链知识,强大的统计能力,使他们能够在复杂环境中找出关键性的因素,解开供应链之谜。
描述性分析是“事后诸葛亮”,是向后看的分析方法,只能告诉我们发生了什么,但是给不出任何的指导意见,所以我们还需要向前看的工具。
预测分析告诉我们接下来会发生什么,帮助我们展望未来,提供正确的决策,避免犯重复的错误。
例如,描述性分析告诉我们,在某一年出现了冷饮畅销的情况,这与当年夏天气候炎热有相关性。我们可以使用历史销售数据和实时的气候数据,通过模型来预测未来冷饮的需求。
供应链团队要监控预测与实际销售量的差异,然后修正模型的参数,以期获得更加准确的预测。随着预测准确率逐渐提高,我们的销售损失和废弃库存会不断减少,运营结果将会得到改善。
线性回归和时间序列分析都属于预测分析。线性回归是根据已知,预测未知的模型,比如我们可以根据已发生的物流运输费用,来预测未来可能发生的运费。
在时间序列分析中,时间是基本的维度,主要的元素有需求的基线、季节性因素、趋势和其他因素。
预测分析的应用场景非常广泛,当我们拥有了大量的数据,包括销售、供应商、物流等结构化数据,以及非结构化的社交媒体数据,我们就可以构建复杂的模型。
这些数据可以用于模拟多个场景,它们都有不同的概率和可能的结果。企业可以预测库存水平、运输费用、缺货损失等情况。
相比于描述性和诊断性分析,预测分析要更加复杂。预测天气、汇率和股市的波动、体育赛事结果等都是困难的。在大量的变量之中,有哪些会对结果产生影响?
预测分析专家需要数据、统计和编程方面的高级技能。随着历史数据和实时数据的爆炸式增长,企业需要借助于数据科学家来开发预测模型,实施机器学习系统,并进行模拟和验证。
在当今世界,懂得供应链管理的数据科学家是最紧俏的人才,处于供不应求的情况,所以拥有预测分析能力的人,未来一片光明。
指示性分析可以推荐决策和行动,它比预测分析更进了一步。经典的经济订货模型(EOQ)就是指示性分析。
企业想要保持最低的订货和库存持有成本,同时满足客户需求并避免缺货,我们需要在这两个目标之间找出一个最佳方案。前文提到的描述性、诊断和预测分析都不能给出答案,而指示性分析就能提供解决方案。
在EOQ模型中,订货成本和持有成本之和的最小值就是最优解。
在规划运输网络时,混合整数线形规划根据所有线路的运输费用、客户需求数量、供应能力和其他变量,建立起多个方程式,然后求出了网络运输费用的最小值以及每条线路运输量的最佳方案。
有些公司使用软件来实施指示性分析策略,还有些公司自主开发工具和模型,以完美地适应他们的供应链。
企业需要博士级别的高级人才来处理复杂的统计数据、算法和每天产生的大量供应链数据。
既了解供应链,又是精英数据科学家的人才比熊猫还珍贵,真可谓是“千军易得,一将难求”。符合这些要求的高级人才可以自己创业,或是在行业头部企业里出任首席供应链管理管,或是从事咨询行业,前途不可限量。
《汽车制造业供应链与物流管理》是根据卓弘毅老师10余年汽车制造业工作经验,结合世界权威供应链协会组织ASCM的理论研究,融会贯通之后,精心制作的一套课件,来帮助更多的朋友来学习先进的制造业供应链物流知识。
618里的“1分钱”快递
1624 阅读2025 LOG低碳供应链物流 杰出贡献奖
1050 阅读2025 LOG 低碳供应链物流 数智化优秀服务商
963 阅读年营收643亿,净利88亿,航空货运三巨头业绩出炉
921 阅读2025 LOG低碳供应链物流 最具影响力品牌商
856 阅读2025 LOG低碳供应链物流 杰出贡献奖
875 阅读买还是租,物流企业持有新能源车的最佳姿势
778 阅读2025 LOG低碳供应链物流 杰出贡献奖
814 阅读2025 LOG低碳供应链物流 最具影响力品牌商
823 阅读顺丰×淘宝天猫合作!极速上门服务,重塑电商物流体验
747 阅读